↳ Prolog
↳ PrologToPiTRSProof
merge_in_gga(X, [], X) → merge_out_gga(X, [], X)
merge_in_gga([], X, X) → merge_out_gga([], X, X)
merge_in_gga(.(A, X), .(B, Y), .(A, Z)) → U1_gga(A, X, B, Y, Z, le_in_gg(A, B))
le_in_gg(s(X), s(Y)) → U6_gg(X, Y, le_in_gg(X, Y))
le_in_gg(zero, s(Y)) → le_out_gg(zero, s(Y))
le_in_gg(zero, zero) → le_out_gg(zero, zero)
U6_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_gga(A, X, B, Y, Z, le_out_gg(A, B)) → U2_gga(A, X, B, Y, Z, merge_in_gga(X, .(B, Y), Z))
merge_in_gga(.(A, X), .(B, Y), .(B, Z)) → U3_gga(A, X, B, Y, Z, gt_in_gg(A, B))
gt_in_gg(s(X), s(Y)) → U5_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), zero) → gt_out_gg(s(X), zero)
U5_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U3_gga(A, X, B, Y, Z, gt_out_gg(A, B)) → U4_gga(A, X, B, Y, Z, merge_in_gga(.(A, X), Y, Z))
U4_gga(A, X, B, Y, Z, merge_out_gga(.(A, X), Y, Z)) → merge_out_gga(.(A, X), .(B, Y), .(B, Z))
U2_gga(A, X, B, Y, Z, merge_out_gga(X, .(B, Y), Z)) → merge_out_gga(.(A, X), .(B, Y), .(A, Z))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
merge_in_gga(X, [], X) → merge_out_gga(X, [], X)
merge_in_gga([], X, X) → merge_out_gga([], X, X)
merge_in_gga(.(A, X), .(B, Y), .(A, Z)) → U1_gga(A, X, B, Y, Z, le_in_gg(A, B))
le_in_gg(s(X), s(Y)) → U6_gg(X, Y, le_in_gg(X, Y))
le_in_gg(zero, s(Y)) → le_out_gg(zero, s(Y))
le_in_gg(zero, zero) → le_out_gg(zero, zero)
U6_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_gga(A, X, B, Y, Z, le_out_gg(A, B)) → U2_gga(A, X, B, Y, Z, merge_in_gga(X, .(B, Y), Z))
merge_in_gga(.(A, X), .(B, Y), .(B, Z)) → U3_gga(A, X, B, Y, Z, gt_in_gg(A, B))
gt_in_gg(s(X), s(Y)) → U5_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), zero) → gt_out_gg(s(X), zero)
U5_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U3_gga(A, X, B, Y, Z, gt_out_gg(A, B)) → U4_gga(A, X, B, Y, Z, merge_in_gga(.(A, X), Y, Z))
U4_gga(A, X, B, Y, Z, merge_out_gga(.(A, X), Y, Z)) → merge_out_gga(.(A, X), .(B, Y), .(B, Z))
U2_gga(A, X, B, Y, Z, merge_out_gga(X, .(B, Y), Z)) → merge_out_gga(.(A, X), .(B, Y), .(A, Z))
MERGE_IN_GGA(.(A, X), .(B, Y), .(A, Z)) → U1_GGA(A, X, B, Y, Z, le_in_gg(A, B))
MERGE_IN_GGA(.(A, X), .(B, Y), .(A, Z)) → LE_IN_GG(A, B)
LE_IN_GG(s(X), s(Y)) → U6_GG(X, Y, le_in_gg(X, Y))
LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
U1_GGA(A, X, B, Y, Z, le_out_gg(A, B)) → U2_GGA(A, X, B, Y, Z, merge_in_gga(X, .(B, Y), Z))
U1_GGA(A, X, B, Y, Z, le_out_gg(A, B)) → MERGE_IN_GGA(X, .(B, Y), Z)
MERGE_IN_GGA(.(A, X), .(B, Y), .(B, Z)) → U3_GGA(A, X, B, Y, Z, gt_in_gg(A, B))
MERGE_IN_GGA(.(A, X), .(B, Y), .(B, Z)) → GT_IN_GG(A, B)
GT_IN_GG(s(X), s(Y)) → U5_GG(X, Y, gt_in_gg(X, Y))
GT_IN_GG(s(X), s(Y)) → GT_IN_GG(X, Y)
U3_GGA(A, X, B, Y, Z, gt_out_gg(A, B)) → U4_GGA(A, X, B, Y, Z, merge_in_gga(.(A, X), Y, Z))
U3_GGA(A, X, B, Y, Z, gt_out_gg(A, B)) → MERGE_IN_GGA(.(A, X), Y, Z)
merge_in_gga(X, [], X) → merge_out_gga(X, [], X)
merge_in_gga([], X, X) → merge_out_gga([], X, X)
merge_in_gga(.(A, X), .(B, Y), .(A, Z)) → U1_gga(A, X, B, Y, Z, le_in_gg(A, B))
le_in_gg(s(X), s(Y)) → U6_gg(X, Y, le_in_gg(X, Y))
le_in_gg(zero, s(Y)) → le_out_gg(zero, s(Y))
le_in_gg(zero, zero) → le_out_gg(zero, zero)
U6_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_gga(A, X, B, Y, Z, le_out_gg(A, B)) → U2_gga(A, X, B, Y, Z, merge_in_gga(X, .(B, Y), Z))
merge_in_gga(.(A, X), .(B, Y), .(B, Z)) → U3_gga(A, X, B, Y, Z, gt_in_gg(A, B))
gt_in_gg(s(X), s(Y)) → U5_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), zero) → gt_out_gg(s(X), zero)
U5_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U3_gga(A, X, B, Y, Z, gt_out_gg(A, B)) → U4_gga(A, X, B, Y, Z, merge_in_gga(.(A, X), Y, Z))
U4_gga(A, X, B, Y, Z, merge_out_gga(.(A, X), Y, Z)) → merge_out_gga(.(A, X), .(B, Y), .(B, Z))
U2_gga(A, X, B, Y, Z, merge_out_gga(X, .(B, Y), Z)) → merge_out_gga(.(A, X), .(B, Y), .(A, Z))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
MERGE_IN_GGA(.(A, X), .(B, Y), .(A, Z)) → U1_GGA(A, X, B, Y, Z, le_in_gg(A, B))
MERGE_IN_GGA(.(A, X), .(B, Y), .(A, Z)) → LE_IN_GG(A, B)
LE_IN_GG(s(X), s(Y)) → U6_GG(X, Y, le_in_gg(X, Y))
LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
U1_GGA(A, X, B, Y, Z, le_out_gg(A, B)) → U2_GGA(A, X, B, Y, Z, merge_in_gga(X, .(B, Y), Z))
U1_GGA(A, X, B, Y, Z, le_out_gg(A, B)) → MERGE_IN_GGA(X, .(B, Y), Z)
MERGE_IN_GGA(.(A, X), .(B, Y), .(B, Z)) → U3_GGA(A, X, B, Y, Z, gt_in_gg(A, B))
MERGE_IN_GGA(.(A, X), .(B, Y), .(B, Z)) → GT_IN_GG(A, B)
GT_IN_GG(s(X), s(Y)) → U5_GG(X, Y, gt_in_gg(X, Y))
GT_IN_GG(s(X), s(Y)) → GT_IN_GG(X, Y)
U3_GGA(A, X, B, Y, Z, gt_out_gg(A, B)) → U4_GGA(A, X, B, Y, Z, merge_in_gga(.(A, X), Y, Z))
U3_GGA(A, X, B, Y, Z, gt_out_gg(A, B)) → MERGE_IN_GGA(.(A, X), Y, Z)
merge_in_gga(X, [], X) → merge_out_gga(X, [], X)
merge_in_gga([], X, X) → merge_out_gga([], X, X)
merge_in_gga(.(A, X), .(B, Y), .(A, Z)) → U1_gga(A, X, B, Y, Z, le_in_gg(A, B))
le_in_gg(s(X), s(Y)) → U6_gg(X, Y, le_in_gg(X, Y))
le_in_gg(zero, s(Y)) → le_out_gg(zero, s(Y))
le_in_gg(zero, zero) → le_out_gg(zero, zero)
U6_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_gga(A, X, B, Y, Z, le_out_gg(A, B)) → U2_gga(A, X, B, Y, Z, merge_in_gga(X, .(B, Y), Z))
merge_in_gga(.(A, X), .(B, Y), .(B, Z)) → U3_gga(A, X, B, Y, Z, gt_in_gg(A, B))
gt_in_gg(s(X), s(Y)) → U5_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), zero) → gt_out_gg(s(X), zero)
U5_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U3_gga(A, X, B, Y, Z, gt_out_gg(A, B)) → U4_gga(A, X, B, Y, Z, merge_in_gga(.(A, X), Y, Z))
U4_gga(A, X, B, Y, Z, merge_out_gga(.(A, X), Y, Z)) → merge_out_gga(.(A, X), .(B, Y), .(B, Z))
U2_gga(A, X, B, Y, Z, merge_out_gga(X, .(B, Y), Z)) → merge_out_gga(.(A, X), .(B, Y), .(A, Z))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
GT_IN_GG(s(X), s(Y)) → GT_IN_GG(X, Y)
merge_in_gga(X, [], X) → merge_out_gga(X, [], X)
merge_in_gga([], X, X) → merge_out_gga([], X, X)
merge_in_gga(.(A, X), .(B, Y), .(A, Z)) → U1_gga(A, X, B, Y, Z, le_in_gg(A, B))
le_in_gg(s(X), s(Y)) → U6_gg(X, Y, le_in_gg(X, Y))
le_in_gg(zero, s(Y)) → le_out_gg(zero, s(Y))
le_in_gg(zero, zero) → le_out_gg(zero, zero)
U6_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_gga(A, X, B, Y, Z, le_out_gg(A, B)) → U2_gga(A, X, B, Y, Z, merge_in_gga(X, .(B, Y), Z))
merge_in_gga(.(A, X), .(B, Y), .(B, Z)) → U3_gga(A, X, B, Y, Z, gt_in_gg(A, B))
gt_in_gg(s(X), s(Y)) → U5_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), zero) → gt_out_gg(s(X), zero)
U5_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U3_gga(A, X, B, Y, Z, gt_out_gg(A, B)) → U4_gga(A, X, B, Y, Z, merge_in_gga(.(A, X), Y, Z))
U4_gga(A, X, B, Y, Z, merge_out_gga(.(A, X), Y, Z)) → merge_out_gga(.(A, X), .(B, Y), .(B, Z))
U2_gga(A, X, B, Y, Z, merge_out_gga(X, .(B, Y), Z)) → merge_out_gga(.(A, X), .(B, Y), .(A, Z))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
GT_IN_GG(s(X), s(Y)) → GT_IN_GG(X, Y)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
GT_IN_GG(s(X), s(Y)) → GT_IN_GG(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
merge_in_gga(X, [], X) → merge_out_gga(X, [], X)
merge_in_gga([], X, X) → merge_out_gga([], X, X)
merge_in_gga(.(A, X), .(B, Y), .(A, Z)) → U1_gga(A, X, B, Y, Z, le_in_gg(A, B))
le_in_gg(s(X), s(Y)) → U6_gg(X, Y, le_in_gg(X, Y))
le_in_gg(zero, s(Y)) → le_out_gg(zero, s(Y))
le_in_gg(zero, zero) → le_out_gg(zero, zero)
U6_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_gga(A, X, B, Y, Z, le_out_gg(A, B)) → U2_gga(A, X, B, Y, Z, merge_in_gga(X, .(B, Y), Z))
merge_in_gga(.(A, X), .(B, Y), .(B, Z)) → U3_gga(A, X, B, Y, Z, gt_in_gg(A, B))
gt_in_gg(s(X), s(Y)) → U5_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), zero) → gt_out_gg(s(X), zero)
U5_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U3_gga(A, X, B, Y, Z, gt_out_gg(A, B)) → U4_gga(A, X, B, Y, Z, merge_in_gga(.(A, X), Y, Z))
U4_gga(A, X, B, Y, Z, merge_out_gga(.(A, X), Y, Z)) → merge_out_gga(.(A, X), .(B, Y), .(B, Z))
U2_gga(A, X, B, Y, Z, merge_out_gga(X, .(B, Y), Z)) → merge_out_gga(.(A, X), .(B, Y), .(A, Z))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
MERGE_IN_GGA(.(A, X), .(B, Y), .(B, Z)) → U3_GGA(A, X, B, Y, Z, gt_in_gg(A, B))
U1_GGA(A, X, B, Y, Z, le_out_gg(A, B)) → MERGE_IN_GGA(X, .(B, Y), Z)
U3_GGA(A, X, B, Y, Z, gt_out_gg(A, B)) → MERGE_IN_GGA(.(A, X), Y, Z)
MERGE_IN_GGA(.(A, X), .(B, Y), .(A, Z)) → U1_GGA(A, X, B, Y, Z, le_in_gg(A, B))
merge_in_gga(X, [], X) → merge_out_gga(X, [], X)
merge_in_gga([], X, X) → merge_out_gga([], X, X)
merge_in_gga(.(A, X), .(B, Y), .(A, Z)) → U1_gga(A, X, B, Y, Z, le_in_gg(A, B))
le_in_gg(s(X), s(Y)) → U6_gg(X, Y, le_in_gg(X, Y))
le_in_gg(zero, s(Y)) → le_out_gg(zero, s(Y))
le_in_gg(zero, zero) → le_out_gg(zero, zero)
U6_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_gga(A, X, B, Y, Z, le_out_gg(A, B)) → U2_gga(A, X, B, Y, Z, merge_in_gga(X, .(B, Y), Z))
merge_in_gga(.(A, X), .(B, Y), .(B, Z)) → U3_gga(A, X, B, Y, Z, gt_in_gg(A, B))
gt_in_gg(s(X), s(Y)) → U5_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), zero) → gt_out_gg(s(X), zero)
U5_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U3_gga(A, X, B, Y, Z, gt_out_gg(A, B)) → U4_gga(A, X, B, Y, Z, merge_in_gga(.(A, X), Y, Z))
U4_gga(A, X, B, Y, Z, merge_out_gga(.(A, X), Y, Z)) → merge_out_gga(.(A, X), .(B, Y), .(B, Z))
U2_gga(A, X, B, Y, Z, merge_out_gga(X, .(B, Y), Z)) → merge_out_gga(.(A, X), .(B, Y), .(A, Z))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
MERGE_IN_GGA(.(A, X), .(B, Y), .(B, Z)) → U3_GGA(A, X, B, Y, Z, gt_in_gg(A, B))
U1_GGA(A, X, B, Y, Z, le_out_gg(A, B)) → MERGE_IN_GGA(X, .(B, Y), Z)
U3_GGA(A, X, B, Y, Z, gt_out_gg(A, B)) → MERGE_IN_GGA(.(A, X), Y, Z)
MERGE_IN_GGA(.(A, X), .(B, Y), .(A, Z)) → U1_GGA(A, X, B, Y, Z, le_in_gg(A, B))
gt_in_gg(s(X), s(Y)) → U5_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), zero) → gt_out_gg(s(X), zero)
le_in_gg(s(X), s(Y)) → U6_gg(X, Y, le_in_gg(X, Y))
le_in_gg(zero, s(Y)) → le_out_gg(zero, s(Y))
le_in_gg(zero, zero) → le_out_gg(zero, zero)
U5_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U6_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
U1_GGA(A, X, B, Y, le_out_gg) → MERGE_IN_GGA(X, .(B, Y))
MERGE_IN_GGA(.(A, X), .(B, Y)) → U3_GGA(A, X, B, Y, gt_in_gg(A, B))
MERGE_IN_GGA(.(A, X), .(B, Y)) → U1_GGA(A, X, B, Y, le_in_gg(A, B))
U3_GGA(A, X, B, Y, gt_out_gg) → MERGE_IN_GGA(.(A, X), Y)
gt_in_gg(s(X), s(Y)) → U5_gg(gt_in_gg(X, Y))
gt_in_gg(s(X), zero) → gt_out_gg
le_in_gg(s(X), s(Y)) → U6_gg(le_in_gg(X, Y))
le_in_gg(zero, s(Y)) → le_out_gg
le_in_gg(zero, zero) → le_out_gg
U5_gg(gt_out_gg) → gt_out_gg
U6_gg(le_out_gg) → le_out_gg
gt_in_gg(x0, x1)
le_in_gg(x0, x1)
U5_gg(x0)
U6_gg(x0)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
U3_GGA(A, X, B, Y, gt_out_gg) → MERGE_IN_GGA(.(A, X), Y)
Used ordering: Polynomial interpretation [25]:
U1_GGA(A, X, B, Y, le_out_gg) → MERGE_IN_GGA(X, .(B, Y))
MERGE_IN_GGA(.(A, X), .(B, Y)) → U3_GGA(A, X, B, Y, gt_in_gg(A, B))
MERGE_IN_GGA(.(A, X), .(B, Y)) → U1_GGA(A, X, B, Y, le_in_gg(A, B))
POL(.(x1, x2)) = 1 + x2
POL(MERGE_IN_GGA(x1, x2)) = x2
POL(U1_GGA(x1, x2, x3, x4, x5)) = 1 + x4
POL(U3_GGA(x1, x2, x3, x4, x5)) = 1 + x4
POL(U5_gg(x1)) = 0
POL(U6_gg(x1)) = 0
POL(gt_in_gg(x1, x2)) = 1 + x2
POL(gt_out_gg) = 0
POL(le_in_gg(x1, x2)) = x1
POL(le_out_gg) = 0
POL(s(x1)) = 0
POL(zero) = 1
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
U1_GGA(A, X, B, Y, le_out_gg) → MERGE_IN_GGA(X, .(B, Y))
MERGE_IN_GGA(.(A, X), .(B, Y)) → U3_GGA(A, X, B, Y, gt_in_gg(A, B))
MERGE_IN_GGA(.(A, X), .(B, Y)) → U1_GGA(A, X, B, Y, le_in_gg(A, B))
gt_in_gg(s(X), s(Y)) → U5_gg(gt_in_gg(X, Y))
gt_in_gg(s(X), zero) → gt_out_gg
le_in_gg(s(X), s(Y)) → U6_gg(le_in_gg(X, Y))
le_in_gg(zero, s(Y)) → le_out_gg
le_in_gg(zero, zero) → le_out_gg
U5_gg(gt_out_gg) → gt_out_gg
U6_gg(le_out_gg) → le_out_gg
gt_in_gg(x0, x1)
le_in_gg(x0, x1)
U5_gg(x0)
U6_gg(x0)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
U1_GGA(A, X, B, Y, le_out_gg) → MERGE_IN_GGA(X, .(B, Y))
MERGE_IN_GGA(.(A, X), .(B, Y)) → U1_GGA(A, X, B, Y, le_in_gg(A, B))
gt_in_gg(s(X), s(Y)) → U5_gg(gt_in_gg(X, Y))
gt_in_gg(s(X), zero) → gt_out_gg
le_in_gg(s(X), s(Y)) → U6_gg(le_in_gg(X, Y))
le_in_gg(zero, s(Y)) → le_out_gg
le_in_gg(zero, zero) → le_out_gg
U5_gg(gt_out_gg) → gt_out_gg
U6_gg(le_out_gg) → le_out_gg
gt_in_gg(x0, x1)
le_in_gg(x0, x1)
U5_gg(x0)
U6_gg(x0)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
U1_GGA(A, X, B, Y, le_out_gg) → MERGE_IN_GGA(X, .(B, Y))
MERGE_IN_GGA(.(A, X), .(B, Y)) → U1_GGA(A, X, B, Y, le_in_gg(A, B))
le_in_gg(s(X), s(Y)) → U6_gg(le_in_gg(X, Y))
le_in_gg(zero, s(Y)) → le_out_gg
le_in_gg(zero, zero) → le_out_gg
U6_gg(le_out_gg) → le_out_gg
gt_in_gg(x0, x1)
le_in_gg(x0, x1)
U5_gg(x0)
U6_gg(x0)
gt_in_gg(x0, x1)
U5_gg(x0)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
U1_GGA(A, X, B, Y, le_out_gg) → MERGE_IN_GGA(X, .(B, Y))
MERGE_IN_GGA(.(A, X), .(B, Y)) → U1_GGA(A, X, B, Y, le_in_gg(A, B))
le_in_gg(s(X), s(Y)) → U6_gg(le_in_gg(X, Y))
le_in_gg(zero, s(Y)) → le_out_gg
le_in_gg(zero, zero) → le_out_gg
U6_gg(le_out_gg) → le_out_gg
le_in_gg(x0, x1)
U6_gg(x0)
From the DPs we obtained the following set of size-change graphs: